Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Epidemics ; 37: 100517, 2021 12.
Article in English | MEDLINE | ID: covidwho-1482585

ABSTRACT

INTRODUCTION: As of 3rd June 2021, Malaysia is experiencing a resurgence of COVID-19 cases. In response, the federal government has implemented various non-pharmaceutical interventions (NPIs) under a series of Movement Control Orders and, more recently, a vaccination campaign to regain epidemic control. In this study, we assessed the potential for the vaccination campaign to control the epidemic in Malaysia and four high-burden regions of interest, under various public health response scenarios. METHODS: A modified susceptible-exposed-infectious-recovered compartmental model was developed that included two sequential incubation and infectious periods, with stratification by clinical state. The model was further stratified by age and incorporated population mobility to capture NPIs and micro-distancing (behaviour changes not captured through population mobility). Emerging variants of concern (VoC) were included as an additional strain competing with the existing wild-type strain. Several scenarios that included different vaccination strategies (i.e. vaccines that reduce disease severity and/or prevent infection, vaccination coverage) and mobility restrictions were implemented. RESULTS: The national model and the regional models all fit well to notification data but underestimated ICU occupancy and deaths in recent weeks, which may be attributable to increased severity of VoC or saturation of case detection. However, the true case detection proportion showed wide credible intervals, highlighting incomplete understanding of the true epidemic size. The scenario projections suggested that under current vaccination rates complete relaxation of all NPIs would trigger a major epidemic. The results emphasise the importance of micro-distancing, maintaining mobility restrictions during vaccination roll-out and accelerating the pace of vaccination for future control. Malaysia is particularly susceptible to a major COVID-19 resurgence resulting from its limited population immunity due to the country's historical success in maintaining control throughout much of 2020.


Subject(s)
COVID-19 , Epidemiological Models , Humans , Malaysia/epidemiology , SARS-CoV-2 , Vaccination
3.
Med J Aust ; 215(9): 427-432, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1389702

ABSTRACT

OBJECTIVES: To analyse the outcomes of COVID-19 vaccination by vaccine type, age group eligibility, vaccination strategy, and population coverage. DESIGN: Epidemiologic modelling to assess the final size of a COVID-19 epidemic in Australia, with vaccination program (Pfizer, AstraZeneca, mixed), vaccination strategy (vulnerable first, transmitters first, untargeted), age group eligibility threshold (5 or 15 years), population coverage, and pre-vaccination effective reproduction number ( Reffv¯ ) for the SARS-CoV-2 Delta variant as factors. MAIN OUTCOME MEASURES: Numbers of SARS-CoV-2 infections; cumulative hospitalisations, deaths, and years of life lost. RESULTS: Assuming Reffv¯ = 5, the current mixed vaccination program (vaccinating people aged 60 or more with the AstraZeneca vaccine and people under 60 with the Pfizer vaccine) will not achieve herd protection unless population vaccination coverage reaches 85% by lowering the vaccination eligibility age to 5 years. At Reffv¯ = 3, the mixed program could achieve herd protection at 60-70% population coverage and without vaccinating 5-15-year-old children. At Reffv¯ = 7, herd protection is unlikely to be achieved with currently available vaccines, but they would still reduce the number of COVID-19-related deaths by 85%. CONCLUSION: Vaccinating vulnerable people first is the optimal policy when population vaccination coverage is low, but vaccinating more socially active people becomes more important as the Reffv¯ declines and vaccination coverage increases. Assuming the most plausible Reffv¯ of 5, vaccinating more than 85% of the population, including children, would be needed to achieve herd protection. Even without herd protection, vaccines are highly effective in reducing the number of deaths.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Herd , Mass Vaccination/organization & administration , SARS-CoV-2/pathogenicity , Adolescent , Adult , Age Factors , Australia/epidemiology , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Computer Simulation , Humans , Immunogenicity, Vaccine , Mass Vaccination/statistics & numerical data , Middle Aged , Models, Immunological , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination Coverage/organization & administration , Vaccination Coverage/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL